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The size scaling behavior of the granular Rayleigh-Taylor instability �J. L. Vinningland et al., Phys. Rev.
Lett. 99, 048001 �2007�� is investigated experimentally, numerically, and theoretically. An upper layer of
grains displaces a lower gap of air by organizing into dense fingers of falling grains separated by rising bubbles
of air. The dependence of these structures on the system and grain sizes is investigated. A spatial measurement
of the finger structures is obtained by the Fourier power spectrum of the wave number k. As the size of the
grains increases the wave number decreases accordingly which leaves the dimensionless product of wave
number and grain diameter, dk, invariant. A theoretical interpretation of the invariance, based on the scaling
properties of the model equations, suggests a gradual breakdown of the invariance for grains smaller than
�70 �m or greater than �570 �m in diameter.
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I. INTRODUCTION

Granular materials are the basis of abundant industrial and
natural processes and an integral part of our everyday life.
Dry granular flows have been widely studied over the past
twenty years �1�, but the study of granular flows where the
interstitial fluid plays an important role is still in its infancy.
Many natural phenomena pertaining to such granular/fluid
flows are active topics of current research, e.g., sedimenta-
tion �2,3�, erosion and river evolution �4�, underwater ava-
lanches and turbidites �5�, and soil fluidization during earth-
quakes �6�. Industrial processes, such as pneumatic transport,
fluidized beds, catalytic cracking �1,7,8� would also benefit
from advances in granular/fluid flow research.

The granular Rayleigh-Taylor instability arises when a
closed, vertical Hele-Shaw cell, partially filled with fine
grains and air at atmospheric pressure, is rapidly rotated to
bring the dense packing of grains above a layer of air.
Shortly after the rotation fine fingers of falling grains emerge
from the initially flat grain-air interface. These fine fingers
subsequently develop into coarser finger structures separated
by bubbles of air. In contrast to the classical Rayleigh-Taylor
instability �9� the coarsening process observed in the granu-
lar case will right from the start bring about a reduction in
the number of fingers and a corresponding increase in the
size of the bubbles. New fingers will form in the center of the
rising bubbles as they reach a certain width, and the charac-
teristic size of the structures is thus maintained at a stable
value.

This granular instability is previously studied both nu-
merically and experimentally �10,11�, using the same model
and setup as in the present paper, with the conclusion that the
two competing mechanisms, one producing finer scales, the
other producing coarser scales, are well reproduced by the
numerical model.

In contrast to the gas-grain instability reported here, Völtz
et al. studied a liquid-grain instability experimentally and

theoretically �12�. The liquid-grain instability bears a strong
resemblance to the classical instability for two liquids with
almost overlapping dispersion relations. The gas-grain insta-
bility, however, displays a quite different behavior with a
coarsening process active from the beginning and a counter-
acting refinement process that stabilizes the average size of
the bubbles.

The purpose of the present investigation is to study the
variations in the flow structures under change of spatial scale
of both the grains and the Hele-Shaw cell. Size invariance is
not commonly studied for granular materials. Indeed, granu-
lar flows are quite sensitive to initial preparation and external
perturbations, so that systematic grain and system size
changes are delicate studies. In the present paper, using the
complementarity of experimental and numerical techniques,
we perform a systematic study of how the structures formed
by the granular Rayleigh-Taylor instability responds to a res-
caling of the system and grain sizes.

The experimental, numerical, and theoretical results pre-
sented all indicate a size invariance of the finger-bubble
structures. However, the theoretical analysis predicts a break-
ing of the invariance if the grains are too small or too large.
The simulations use grains ranging from 70 to 490 �m in
diameter, and the experiments use grains ranging from 80 to
570 �m in diameter. Consistent data collapses are obtained
from these results and demonstrate a fairly robust invariance
within the given limits.

The simulations and experiments presented in Ref. �11�
were performed with identical parameters to provide an as-
sessment of the numerical model. In the present paper we
present experimental and numerical results obtained in a new
parameter regime not explored in previous publications.
However, in this paper the parameters of the experiments and
simulations are no longer identical, due to less emphasis on
model assessment. In particular, the simulations and experi-
ments are carried out using slightly different grain densities.
The scale invariance of the granular Rayleigh-Taylor invari-
ance was first acknowledged in Ref. �10�. The current paper
provides a more elaborate discussion of this invariance in-*janlv@fys.uio.no
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cluding results from experiment, simulation and theory not
presented in �10�.

The paper is organized as follows. A presentation of the
experimental setup and implementation is given in the next
section. The numerical model is briefly presented in Sec. III,
and the results, together with the data analysis, are presented
and discussed in Sec. IV. The theoretical basis of the size
invariance, based on the scaling properties of the model
equations, is presented in Sec. V. Section VI presents nu-
merical data obtained to check for possible container size
effects. Finally, a conclusion and summary are given in Sec.
VII.

II. EXPERIMENT

The experimental setup is the same as was used in Refs.
�10,11� and will only be presented briefly here. Four Hele-
Shaw cells of different sizes are partially filled with mono-
disperse polystyrene beads and air at atmospheric pressure.
The sizes of the cells scale proportionally with the diameter
of the grains they contain, see Table I. The cells are
filled with Dynoseeds polystyrene spheres of density
�g=1.05 g /cm3 �manufactured by Microbeads �13��. The
cells are individually mounted on a hinged bar and rapidly
rotated to an upright position, see Fig. 1. Images of the fall-
ing grains are recorded by a high speed digital camera
�Photron Fastcam-APX 120K� at a rate of 500 frames per
second.

The humidity in the laboratory was kept at about 30%
during the assembling of the cells, and the grains were ex-
posed to the air in the laboratory for some time before the

filling. This is to prevent clustering of the grains due to co-
hesion, arising from capillary bridges, or electrostatic forces.

The experimental cells are somewhat taller than the nu-
merical cells to account for the grains that settle during the
rotation. The horizontal filling procedure of the cells makes it
difficult to control the filling fraction, and it may vary
slightly between the four cells. During the assembling of the
cells the TS 500–53 beads was presumed to have a diameter
of 500 �m. However, an analysis performed by Microbeads
shows that the mean diameter of these grains is in fact
570 �m. This explains the slight discrepancy between the
width of the cell and the diameter of the grains in this case.

III. SIMULATION

The numerical model has proved to be very consistent in
reproducing experimentally observed structures in granular
flows and instabilities in the regime of low Reynolds num-
bers �14–17�. The theoretical basis and derivation of the
model are given in Refs. �14,15� and a description of the
current implementation is given in Ref. �11�. However, a
brief outline of the model will be presented here for com-
pleteness.

The granular phase is modeled as discrete, rigid spheres
that collectively constitute a deformable porous medium. The
pressure drop associated with the air flowing through the
granular medium is given by a local Darcy’s law �18� with
the Carman-Kozeny relation for the permeability � �19�. The
continuum gas phase is described solely by its pressure P.
The velocity field of the gas may be obtained from the pres-
sure gradient via Darcy’s law. In order to provide a con-
tinuum description of the pressure P�x ,y� on a grid �x ,y�, the
continuum variables, solid fraction ��x ,y�, and granular ve-
locity u�x ,y� need to be calculated. This is done by a linear
smoothing function s�r−r0� expressed mathematically as
�14�

s�r − r0� = ��1 −
�x

l
��1 −

�y

l
� if �x,�y � l

0 otherwise,
	 �1�

where r�x ,y� is the position of the grain, r0�x0 ,y0� is the
position of the grid node, �x= 
x−x0
 and �y= 
y−y0

are the relative distances, l is the lattice constant, and
�ks�r−rk�=1 with k indexing the four neighboring sites of a
grain positioned at r.

From the continuity equations of air mass and grain mass,
using the average velocity of the air in the porous matrix
�i.e., uDarcy /��, a pressure equation is derived, see �14,15�,

�� �P

�t
+ u · �P� = � · �P

����
�

� P� − P � · u , �2�

where �=1−� is the porosity, and � is the viscosity of air.
This equation is valid for compressible flows since it as-
sumes �a��P �isothermal ideal gas law� for the air density,
�a. If instead an incompressible liquid is considered this as-
sumption becomes �l�� for the liquid density �l. The pres-
sure Eq. �2� then simplifies to a Poisson equation for the
pressure given by � · ����� /�� P�=� ·u.

TABLE I. Listing of the diameters of the grains and the dimen-
sions of the Hele-Shaw cells used in the experiments.

Diameter
��m� 80 140 230 570

Width �mm� 31 56 91 200

Height �mm� 61 86 141 305

Depth �mm� 1.0 1.7 2.3 5.4
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FIG. 1. �Color online� �left� Side view of the experimental setup
with the initial and final cell positions superimposed. �right� Typical
snapshot from an experiment using grains of 230 �m in diameter
in a cell that is 91	141	2.3 mm.
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The grains are governed by Newton’s second law

m
dv

dt
= mg + FI −

V � P

�
, �3�

where m, v, and V are, respectively, the mass, velocity, and
volume of a grain. The interparticle normal force FI acting
between grains in contact is calculated iteratively using con-
tact dynamics �20� �but a Hookean or Hertzian contact law
may be used instead�. The dynamics of the grains are sim-
plified by neglecting particle-particle and particle-wall fric-
tion. A lower cutoff is imposed on the solid fraction because
the Carman-Kozeny relation is not valid for a solid fraction
less than 0.25 �21�. This cutoff causes the permeability in the
most dilute regions of the system to be slightly underesti-
mated. This leads to a slight overestimation of the pressure
forces acting on grains in dilute regions. The effect of this
artifact is however decreasing with increasing granular iner-
tia.

A series of seven simulations are performed and each
simulation uses monodisperse grains of different diameters,
see Table II. The same relative start configuration of 160 000
grains is used in all the simulations and the size of the sys-
tem, given in Table II, scales proportionally to the diameters
of the grains. The mass density of the grains is 2.5 g /cm3, a
common value for glass beads. In the simulations we have
introduced a larger density than in the experiments in order
to minimize the numerical artifacts caused by the solid frac-

tion cutoff. These artifacts are manifested as slightly curved
and buckled fingers that become visible as the inertia of the
grains decreases.

IV. RESULTS AND ANALYSIS

Images from each of the seven simulations and four ex-
periments are, respectively, shown in Figs. 2 and 3. The cor-
responding spatial dimensions of the cells are given in Tables
I and II. Each row of images in Figs. 2 and 3 represents a
given time t, and each column of images represents a given
grain-diameter d. From the snapshots in Figs. 2 and 3 it is
evident that the finger-bubble structures depend strongly on
grain size. For cells with grains of diameters smaller than

TABLE II. Listing of the diameters of the grains and the dimen-
sions of the cells used in the simulations.

Diameter
��m� 70 140 210 280 350 420 490

Width �mm� 28 56 84 112 140 168 196

Height �mm� 34 68 102 136 170 204 238

d = 70 μm d = 490 μmd = 420 μmd = 350 μmd = 280 μmd = 210 μmd = 140 μm

t=
0.
06

s
t=

0.
14

s
t=

0.
22

s

FIG. 2. Numerical snapshots. Each column represents different simulations using grains of diameter d, and each row represents snapshots
at different times t.

d = 80 μm

t=
0.
04

s

d = 570 μmd = 230 μmd = 140 μm

t=
0.
32

s
t=

0.
18

s

FIG. 3. Experimental snapshots. Each column represents a dif-
ferent experiment characterized by the diameter d of the grains
used, and each row represents a different time t.
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200 �m it is relatively easy to identify a unique interface
that separates an upper, dense granular packing from the air
below. For grain diameters greater than 200 �m, however,
small air-bubbles appear in the bulk of the packing above the
grain-air interface. These precursory bubbles are separated
by horizontal filaments of grains which form in addition to
the vertical fingers. The number of precursory bubbles in-
creases as the grain diameter increases. These structures are
analogous to the bubbles observed in the ripple instability
arising in a tilted tube of sand �16,22�.

Scale invariance

A size measurement of the finger structures is obtained by
making a Fourier transform of the solid fraction field ��x ,y�.
The resulting Fourier spectrum S̄�k , t�, i.e., the wave number
distribution for a given time t, enables a quantitative com-
parison of finger structures for different grain and system
sizes.

The distribution S̄�k , t� is calculated as follows. The
power spectrum Sj�k� of each horizontal line j of the solid
fraction field is obtained by the discrete Fourier transform
�23�, using Hamming data windows to avoid frequency leak-
age due to the nonperiodic character of the system. By aver-
aging over the individual power spectra Sj�k� the final aver-

age distribution S̄�k , t� is obtained. This procedure is
illustrated in Fig. 4: the left plot shows power spectra Sj�k�
obtained at three given positions yj of horizontal cuts of the
density function ��x ,y� shown in the right plot of the same
figure. Large � values appear in red �gray� and small � values
appear in blue �dark gray�.

As Fig. 4 illustrates it is not necessary to reduce the Fou-
rier analysis to a spatial window centered around the inter-
face. The power spectra obtained in the bulk above the inter-
face are anyway flat and make no contributions to the final
averaged power spectrum.

The experimental data are treated similarly to the numeri-
cal data. However, the solid fraction field is not directly
available in the experimental data and it is therefore esti-
mated by the gray level values of the image pixels. The pixel
value is assumed to be linearly related to the solid fraction.
The inaccuracy of this assumption is not likely to have a
large effect on the measurements.

Figure 5 shows log-log plots of S̄�dk�, i.e., the power

spectra S̄�k� rescaled by the grain-diameter d, for the numeri-

cal data. The inset plots show the unscaled spectra S̄�k� as
function of k in cm−1. Notice that the power spectra in Fig. 5

k (1/cm)

S j
(k
)

y

0 4 8 12
x (cm)

0 1 2 3 4 5

FIG. 4. �Color online� Plots of Fourier power spectra Sj�k� �left�
obtained at three different heights of the solid fraction field ��x ,y�
�right� shown as a color coded data image �red �gray� is high �, blue
�dark gray� is low ��. The stapled white lines indicate at which y
position the power spectra are obtained.
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FIG. 5. �Color online� Plots of S̄�dk� �S̄�k� in inset plots� ob-

tained from numerical data. Each plot is a data collapse of S̄�dk� for
all grain-diameters d at three different times t �the same times as in
Fig. 2�. The different colors represent different grain diameters
ranging from 70 to 490 �m as indicated in the inset plots. The

straight black lines are power laws obeyed by S̄�dk� at large and

small scales: S̄�dk��constant at large scales �growing white noise�,
and S̄�dk���dk�−2.5 at small scales.
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are calculated from the numerical data shown in Fig. 2. Fig-

ure 6 similarly shows log-log plots of S̄�dk� obtained from
the experimental data presented in Fig. 3. The inset plots

show the unscaled spectra S̄�k�.
The plot in Fig. 5�a� hardly qualifies as a data collapse, in

contrast to the other plots in Figs. 5 and 6. This is due to the
fact that initially the falling grains are constantly expanding
which increases the divergence of the velocity field, � ·u. As
is shown in Eq. �8� the source term, P� ·u, of the pressure
equation Eq. �2� will break the invariance. Hence, the invari-
ance observed for larger times is only possible due to the

smallness of the source term for larger times.
The characteristic wave number �where the power spectra

start to decrease� seen in Fig. 5 gradually shifts from higher
to lower values as time evolves. This corresponds well with
the observed coarsening with time of the finger structures
both in the numerical and the experimental data. However,
compared to the numerical data, the shift from higher to
lower wave numbers is less evident in the experimental data
since the initially very fine fingers is not observed in the
experiments.

After the very initial period, the �collapsed� power spectra
plotted in Figs. 5 and 6 can be shown to be consistent with

two power laws: S̄�dk��constant for large scales �growing
white noise�, and S�dk���dk�−2.5 at small scales �straight
black lines in Figs. 5 and 6�. These exponents can be ob-
tained from linear fits of the bilogarithmic plots, and are
determined with a precision of order 0.5. These power laws
are valid both for the numerical �Fig. 5� and experimental
�Fig. 6� results. In the experiments, however, there is also an
additional bump of the power spectra for the smallest scales
�largest wave numbers� departing from the S�dk���dk�−2.5

scaling behavior. This behavior may be attributed to the fact
that these largest k values are at the limit of the spatial res-
olution in the experiments.

The early-time power spectra displayed in Figs. 5�a� and
6�a� are quite scattered around the power laws. This might be
related to the fact that at early times the size scaling is also
not satisfied due to accelerating grains, as previously dis-
cussed.

V. THEORETICAL INTERPRETATION

Let us assume that we have a solution of our gas and grain
equations. Now, if we magnify all physical scales, the veloci-
ties and the pressure variations by a constant factor 
, how
close will we come to a solution of our equations?

In mathematical terms, let P, ��x , t�=m�n�x , t�, and vi be
the pressure field, the mass density field, and particle veloci-
ties that solve the equations

�
dP

dt
= � · ��P � P

�
� − P � · u ,

m
dv

dt
= mg + FI −

m � P

�
, �4�

where as before u is the local average of the vi’s. We split the
velocity as follows: vi=�vi+u0 and u=�u+u0, where u0 is
the constant sedimentation velocity of a close packed system.
We substitute P= P0+�P and FI=maI and make the observa-
tion that �P� P0, which leads to the justified approximation

�
��P

�t
= � · ��P0 � �P

�
� − P0 � · �u ,

dv

dt
= g + aI −

�P

�
. �5�

Here the substantial derivative has been replaced by the par-
tial derivative because u ·��P� P0� ·�u. A rough estimate
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FIG. 6. �Color online� Plots of S̄�dk� �S̄�k� in inset plots� ob-

tained from experimental data. Each plot is a data collapse of S̄�dk�
for all grain-diameters d at three different times t �the same times as
in Fig. 3�. The different colors represent different grain diameters
ranging from 80 �m to 570 �m as indicated in the inset plots. The

straight black lines are power laws obeyed by S̄�dk� at large and

small scales, as in the numerical case: S̄�dk��constant at large

scales, and S̄�dk���dk�−2.5 at small scales.
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using u�10−2 m /s, ��P�10−3 Pa /m, P0=105 Pa, and
� ·�u�10 s−1 justifies this assumption. As in a hydrostatic
system we assume that the pressure field of the magnified
system is �P��x� , t�=
�P�x , t�=
�P�x� /
 , t�, where x�=
x.
We make the following scaling ansatz, expressing the solu-
tions of Eqs. �5� in terms of the scaled fields as

�P�x,t� =
1



�P��x�,t� ,

u0 =
1


2u0�,

�u�x,t� =
1



�u��x�,t� ,

��x,t� = ���x�,t� , �6�

where the sedimentation velocity u0� scales as 
2 because the
local density is 
-invariant and permeability goes as length
squared and scales as 
2, i.e.,

�� = 
2� . �7�

Note that Eqs. �5� are unaffected by the scaling of u0. Using
the new length scale in the derivative �� we get �=
��.
The pressure gradient ��P, �, �, and t are all invariant. By
substitution we obtain

�
��P�

�t
= �� · ���P0���P�

�
� − 
P0�� · �u�,

1



�dv�

dt
− aI�� = g −

��P�

��
, �8�

as the equations satisfied by the scaled fields. Note
that by mass conservation of the granular phase, i.e.,
d� /dt=−�� ·�u, the last term of the pressure equation may
be written −P0� ·�u= �P0 /��d� /dt, and this term thus gives
the effect of density changes in a frame of reference moving
with the grains. This implies that the term vanishes for a flow
field without internal compression or expansion. If such a
flow field is also steady, like that of a slab of connected
particles moving at a constant velocity, the acceleration
terms vanish along with the −P0� ·�u term, i.e., all the

-dependent terms vanish in Eq. �8�. This invariance means
that the scaled fields are solutions of the same equations as
the original fields.

The terms that are multiplied by a 
-factor break the in-
variance. To get an estimate of their relative magnitude we
introduce dimensionless numbers. Taking the characteristic
length scale of the flow to be l and the time scale to be l /u
we may write

Fr =
u2

gl
�

dv/dt

g
,

A =
180 �ul

�Pd2 �
P0 � · �u

� · ��P0 � �P

�
� , �9�

where Fr is known as the Froude number. Taking
d=140 �m, l= �k−1=0.01 m at t=0.5 s and
u= l / t=0.02 m /s we get Fr=0.004. With �P=0.01 atm. and
the same values for the length scale l we get A=0.04.

Since A and Fr measure the relative magnitude of the
invariance-breaking terms, the smallness of A and Fr indicate
that the scaled fields are close to satisfying the physical Eqs.
�5�. For this reason we may expect all lengths in the simula-

tions to scale the same way, and S̄�dk� will be invariant under
scaling by 
. However, since Fr�
, increasing the magnifi-
cation will increase the relative effect of granular inertia,
and, we expect, the deviations from this scaling property. On
the other hand, A�1 /
 so decreasing the particle size will
cause the compression term in the pressure equation to grow
in relative magnitude. It is therefore only in a certain window
of particle sizes around d=140 �m that we may expect the
scale invariance. In particular, for the d=70 �m simulations
it is likely that deviations from the scaling behavior arise due
to the relatively large A value.

The above scaling invariance is somewhat analogous to
the scale invariance of low Reynolds number flows, where
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FIG. 7. �Color online� �a� Plot of the mean wave number �k
obtained from four different simulations with grains of diameter
d=140 �m but with four different cell widths w. �b� Same plot for
the standard deviation .
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the inertial term may be neglected since it is small compared
to the viscous term, and symmetries of the flow solutions
emerge because the Navier-Stokes equations are replaced by
the Stokes equation.

VI. CONTAINER SIZE EFFECTS

In the experiments and simulations presented so far the
size of the grains and the size of the container are changed
proportionally to each other such that every container con-
fines approximately the same number of grains. To address
the question of possible container size effects a series of
simulations is performed where the size of the grains and the
size of the container are changed independently. Four differ-
ent simulation geometries are used while the grain diameter
is kept fixed at 140 �m. The four numerical cells all have
the same height of 68 mm but different widths of 14, 28, 42,
and 56 mm. To compare the different results the power spec-

trum S̄�k , t� for each of the four simulations is obtained as
explained in Sec. IV. In order to represent the temporal evo-

lution of S̄�k , t� the mean and standard deviation of S̄�k , t� are
calculated by the usual definitions

�k�t� =
� kS̄�k,t�

� S̄�k,t�
, �10�

�t� =�� k2S̄�k,t�

� S̄�k,t�
− �k�t�2, �11�

where the summation is over all k values.
Figure 7 shows the mean wave number �k and standard

deviation  for the four different geometries. During the
coarsening stage, i.e., from t=0 s until t=0.2 s, the four
curves overlap quite well. For t�0.2 s the curves are more

spread due to two peaks in the w=14 and 28 mm data. These
peaks are most likely caused by fluctuations in the evolving
structures which are not averaged out due to less statistics for
the narrow geometries. In addition, the different granular
configurations used in the four runs also account for some
variations in the data. For cell widths less than roughly 14
mm container size effects will be present since this width is
smaller than the maximum width a bubble may reach in a
wide cell. However, the data in Fig. 7 shows no systematic
dependence on the container size.

In �10� it was shown that plots of �k for different grain
sizes will overlap only if �k is rescaled by the grain-
diameter d. In Fig. 7 the plots overlap although no rescaling
of �k by, e.g., the container width w is applied. Hence, the
observed pattern scales with grain size and not container
size.

VII. CONCLUSION AND SUMMARY

In summary we have uncovered an approximate scale in-
variance in a granular Rayleigh-Taylor instability �10,11�
through experimental measurements and complementary
simulations. In addition, a theoretical interpretation is pro-
vided with the conclusion that the validity of the scale in-
variance is limited to a window of grain diameters from
roughly 70 �m to about 570 �m. The scale invariance may
be interpreted as the existence of a Stokes-like regime for the
investigated systems. Terms arising from grain inertia for
large grains, or from pressure sources �i.e., P� ·u� for small
grains, will gradually break the invariance. A separate series
of simulations with constant grain sizes but different geom-
etries was performed with the conclusion that the observed
scale invariance is not affected by container size effects. The
deviations observed in this invariance has been given inter-
pretations both in terms of theoretical arguments and in
terms of numerical and experimental imperfections.
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